Apa Perbedaan Lintasan dan Pemindahan?
itu Perbedaan utama antara lintasan dan perpindahan adalah bahwa yang terakhir adalah jarak dan arah yang ditempuh oleh suatu objek, sedangkan yang pertama adalah rute atau bentuk yang diadopsi oleh pergerakan objek tersebut.
Namun, untuk melihat lebih jelas perbedaan antara perpindahan dan lintasan, lebih baik untuk menentukan konseptualisasi mereka melalui contoh-contoh yang memungkinkan pemahaman yang lebih baik dari kedua istilah tersebut..
Perpindahan
Ini dipahami sebagai jarak dan arah yang ditempuh oleh suatu objek dengan mempertimbangkan posisi awalnya dan posisi akhirnya, selalu dalam garis lurus. Untuk perhitungannya, karena ini merupakan besaran vektor, pengukuran panjang yang dikenal sebagai sentimeter, meter atau kilometer digunakan..
Rumus untuk menghitung perpindahan didefinisikan sebagai berikut:
Dari sini dapat disimpulkan bahwa:
- Δx = perpindahan
- Xf = posisi akhir objek
- Xsaya = posisi awal objek
Contoh perpindahan
1- Jika sekelompok anak berada di awal rute, yang posisi awalnya 50m, bergerak dalam garis lurus, tentukan perpindahan di setiap titik Xf .
- Xf = 120 m
- Xf = 90 m
- Xf = 60m
- Xf = 40m
2- Data masalah diekstraksi menggantikan nilai-nilai X2 dan X1 dalam rumus perpindahan:
- Δx = ?
- Xsaya = 50 m
- Δx = Xf - Xsaya
- Δx = 120m - 50m = 70m
3- Dalam pendekatan pertama ini kita mengatakan bahwa Δx sama dengan 120m, yang sesuai dengan nilai pertama yang kami temukan dari Xf, minus 50m yang merupakan nilai Xsaya, memberi kita sebagai hasilnya 70m, yaitu, ketika mencapai 120m perjalanan perpindahan adalah 70m ke kanan.
4- Lanjutkan untuk menyelesaikan secara setara untuk nilai-nilai b, c dan d
- Δx = 90m - 50m = 40m
- Δx = 60m - 50m = 10m
- Δx = 40m - 50m = - 10m
Dalam hal ini perpindahan memberi kita negatif, itu berarti bahwa posisi akhir berada di arah yang berlawanan dengan posisi awal.
Lintasan
Ini adalah rute atau garis yang ditentukan oleh suatu objek selama pergerakannya dan penilaiannya dalam Sistem Internasional, umumnya mengadopsi bentuk-bentuk geometris seperti garis lurus, parabola, lingkaran atau elips). Itu diidentifikasi melalui garis imajiner dan karena itu adalah kuantitas skalar diukur dalam meter.
Perlu dicatat bahwa untuk menghitung lintasan kita harus tahu apakah tubuh sedang diam atau bergerak, artinya, diserahkan ke sistem referensi yang kita pilih.
Persamaan untuk menghitung lintasan objek dalam Sistem Internasional diberikan oleh:
Kita harus:
- r (t) = adalah persamaan lintasan
- 2t - 2 dan t2 = menunjukkan koordinat sebagai fungsi waktu
- .saya dan .j = adalah vektor satuan
Untuk memahami perhitungan jalur yang dilalui oleh suatu objek, kami akan mengembangkan contoh berikut:
- Hitung persamaan lintasan vektor posisi berikut:
- r (t) = (2t + 7) .i + t2.j
- r (t) = (t - 2) .i + 2t .j
Langkah pertama: Karena persamaan lintasan adalah fungsi X, untuk melakukan ini, tentukan nilai masing-masing X dan Y di masing-masing vektor yang diusulkan:
1- Memecahkan vektor posisi pertama:
- r (t) = (2t + 7) .i + t2.j
2- Ty = f (x), di mana X diberikan oleh konten dari vektor satuan .i dan Y diberikan oleh isi dari vektor satuan .j:
- X = 2t + 7
- Y = t2
3- y = f (x), yaitu, waktu bukan bagian dari ekspresi, oleh karena itu kita harus menghapusnya, kita telah meninggalkan:
4- Kami mengganti izin di Y. Tetap:
5- Kami menyelesaikan konten tanda kurung dan kami memiliki persamaan lintasan yang dihasilkan untuk vektor satuan pertama:
Seperti yang dapat kita lihat, ini memberi kita persamaan derajat kedua, ini berarti bahwa lintasannya memiliki bentuk parabola.
Langkah kedua: Kami melanjutkan dengan cara yang sama untuk perhitungan lintasan vektor satuan kedua
r (t) = (t - 2) .i + 2t .j
- X = t - 2
- Y = 2t
2- Mengikuti langkah-langkah yang kita lihat di atas y = f (x), kita harus menghapus waktu karena itu bukan bagian dari ekspresi, kita telah meninggalkan:
- t = X + 2
3- Ganti clearance di Y, tinggal:
- y = 2 (X + 2)
4- Memecahkan tanda kurung kita memiliki persamaan lintasan yang dihasilkan untuk vektor satuan kedua:
Dalam prosedur ini, garis lurus dihasilkan, yang memberitahu kita bahwa lintasan memiliki bentuk bujursangkar.
Memahami konsep perpindahan dan lintasan kita dapat menyimpulkan sisa perbedaan yang ada di antara kedua istilah.
Lebih banyak perbedaan antara perpindahan dan lintasan
Perpindahan
- Ini adalah jarak dan arah yang ditempuh oleh suatu objek dengan mempertimbangkan posisi awalnya dan posisi akhirnya.
- Itu selalu terjadi dalam garis lurus.
- Itu dikenali dengan panah.
- Menggunakan ukuran panjang (sentimeter, meter, kilometer).
- Ini kuantitas vektor.
- Mempertimbangkan arah yang ditempuh (ke kanan atau ke kiri)
- Tidak mempertimbangkan waktu yang dihabiskan selama perjalanan.
- Itu tidak tergantung pada sistem referensi.
- Ketika titik awal adalah titik awal yang sama, perpindahannya adalah nol.
- Modul harus bertepatan dengan ruang yang akan ditutupi selama lintasannya adalah garis lurus dan tidak ada perubahan arah untuk diikuti.
- Modul cenderung meningkat atau menurun ketika gerakan terjadi, dengan mengingat lintasan.
Lintasan
Ini adalah rute atau garis yang ditentukan oleh suatu objek selama pergerakannya. Mengadopsi bentuk geometris (lurus, parabola, bundar atau elips).
- Ini diwakili melalui garis imajiner.
- Itu diukur dalam meter.
- Ini jumlah skalar.
- Itu tidak memperhitungkan arah yang ditempuh.
- Pertimbangkan waktu yang dihabiskan selama tur.
- Tergantung pada sistem referensi.
- Ketika titik awal atau posisi awal sama dengan posisi akhir, lintasan diberikan oleh jarak yang ditempuh.
- Nilai lintasan bertepatan dengan modul vektor perpindahan, jika lintasan yang dihasilkan adalah garis lurus, tetapi tidak ada perubahan arah untuk mengikuti.
- Itu selalu meningkat ketika tubuh bergerak, terlepas dari lintasan.
Referensi
- Alvarado, N. (1972)Fisika Tahun Pertama Sains. Editorial Fotoprin C.A. Venezuela.
- Fernández, M; Fidalgo, J. (2016). Fisika dan Kimia Baccalaureate Pertama. Ediciones Paraninfo, S.A. Spanyol.
- Institut Pendidikan Radio Guatemala. (2011) Fisika dasar. Semester Pertama Grupo Zaculeu. Guatemala.
- Fernández, P. (2014) Bidang ilmiah-teknologi. Edisi paraninfo. S.A. Spanyol.
- Physical Lab (2015) Displacement Vector. Diperoleh dari: fisicalab.com.
- Contoh Dari. (2013) Pemindahan. Dipulihkan dari: ejemplosde.com.
- Proyek Ruang Tamu (2014) Apa itu perpindahan? Diperoleh dari: salonhogar.net.
- Laboratorium Fisik (2015) Konsep persamaan lintasan dan posisi. Diperoleh dari: fisicalab.com.